
On a noise-induced transition in a reactive system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 L925

(http://iopscience.iop.org/0305-4470/25/15/004)

Download details:

IP Address: 171.66.16.58

The article was downloaded on 01/06/2010 at 16:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 25 (1992) L925-L930. Printed in the UK 

LETIER TO THE EDITOR 

On a noise-induced transition in a reactive system 
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Federal Republic of Germany 

Received 28 April 1992 

Abstmel. The reanion of a two-component system is studied both under the influence of 
a stochastic reaction rate and additional fluctuations of the concentrations. There results 
a noise-induced transition in the case of a coupling between the two kinds of randomness 
with a characteristic exponent @ = I .  The typical rime of the dynamics is appmximately 
calculated by means of a perturbation expansion for a mean first passage time. 

A large number of problems in non-equilibrium statistical mechanics may be formulated 
in terms of nonlinear differential equations for the time evolution of certain physical 
quantities. Typical examples are reaction-diffusion phenomena which are of current 
interest 11-71, Here, the consideration of the reaction gives rise to nonlinear terms 
proportional to the product of the reactants concentrations. In general, the resulting 
equations are not of potential type [8], which may lead to deviations from conventional 
behaviour (compare [9]). 

In addition to the deterministic part, there occur also noise source terms representing 
the influence of different kinds of fluctuations. An additive noise term, for example, 
...- may sims!a!e random reartinn events: A mG!tip!ica!ive noise c ~ u ! d  he originated by 
a fluctuating reaction rate. 

An example for reaction phenomena is the process caused by an ion-exchange in 
a glass. Ag+ ions covered on the surface will react with FeZt ions within the glass 
matrix. The resulting neutral Ag+ atoms will change the optical properties of the 
material, which is of practical interest [IO]. 

The present letter addresses a simple modelling of this situation. In particular, we 
study a model with two kinds of randomness which are coupled to the concentrations 
in an additive and in a multiplicative way. 

We consider a two-component system. The concentrations are denoted by 
n + ( f ) ,  n _ ( f ) .  They are space averaged quantities. In the example mentioned above 
n + ( f )  and n _ ( f )  stand for the concentration of Ag- ions and Fe- ions, respectively. 

The conventional deterministic evolution equation reads 
a,n+ = d,n_ = -An+n_ (1) 

where A is the reaction rate. The system is placed under the non-equilibrium initial 
conditions n+(O) = N and n_(O) = N - n.. Without loss of generality the excess con- 
centration n, is assumed to  be negative. It follows immediately that 

n + ( t )  = n _ ( r ) +  n, Vf.  (2) 
Inserting (2) into (1) we get as the solution 
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From here one concludes the typical timescale forthe relaxation to be 7 = - (Ane)-’.  
We remark that, for t + m ,  n+ tends to zero, which is the stationary solution. This 
means physically that the whole amount of one of the substances will be exhausted. 

Let us stress that the exponential decay is originated by the non-zero excess 
concentration. If ne = 0 (n+ = n - )  there results from (3) asymptotically a decay like t-’ 
which should be exact even in the presence of diffusion and spatial fluctuations if the 
space dimensionality is larger than 2 [l], rederived recently in [3]. 

The time tinecessary for reaching a certain concentration nf < N is calculated from 
(3) as 

However, the model defined by ( 1 )  neglects any kind of fluctuations. Random 
reaction events cause a noise term additive to (1 ) .  A fluctuating reaction rate can be 
described by a multiplicative noise term. Both kinds of fluctuations could have a 
common origin, e.g. chemical changes in the environment (varying concentrations of 
the reaction products etc). Consequently, an extension of the model should describe 
two kinds of noise, which can be coupled to each other. We start with the following 
stochastic differential equation: 

( 5 )  J,n+= -(A)n+(n+- n e ) -  n+(n+-  nJ5t + K & .  

(5,) = 0 

Here 5, denotes a stochastic process, which is assumed to be Gaussian with 

(5,, 5,4 = g28(t  - t ’ )  vt, t’. 

The second term in ( 5 )  results from the reaction rate fluctuations, and the third one 
is the additive noise mentioned above. Since we have assumed a common origin for 
both of the noises, ( 5 )  includes only one stochastic source. The parameter U is the 
strength of the noise; K measures the rate of the strengths of the two noisy terms. It 
can be positive or negative as well. 

The model with a purely multiplicative noise ( K = 0) reveals a stationary solution 
which describes the deterministic state resulting from (1 ) .  This will be shown below. 
On the other hand, a purely additive noise does not qualitatively change the stationary 
solution either. As is well known [ll], the only effect is a broadening ofthe probability 
density, which is 8-shaped in the deterministic case. The same is to be concluded if 
both of the noises are independent. A new situation arises only in the case of a coupling 
between the noises, which is considered in ( 5 ) .  

Contrary to the deterministic model, equation ( 5 )  allows solutions with a momen- 
tarily increasing concentration, which corresponds to the backward reaction. 

Following a standard procedure [14] we get from (5) the Fokker-Planck equation 
for the time dependent probability density p ( n + ,  t ) :  

J , P ( n + ,  t ) =  -J.+[f(n+)P(n+, 11 +$Ja’.,[g’(n+)P(n+, Y ) I  (6) 
with 

f ( n + )  = -(A)( n + -  rt . )n++~’[(n+-n=)n+--~I(f l+-n. /2)  
g ’ ( n + ) = c 7 2 [ ( f l + - f l . ) f l + - K ] 2 .  

As usualf(n+) and g2(n+) are called drift and diffusion, respectively. 
The stochastic differential equation (5) is interpreted according to Stratonovich. 

This seems to be meaningful, since the white noise is understood as the limit of a 
coloured noise [ 121. 
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Provided the diffusion term g2 does not vanish in the physically accessible region 
for n, the stationary probability density is easily obtained as: 

with 

K ( A )  

U* ( 4 K  + n:)"' U2 ' 
c=- 2(A) 2 K f n I  

a =- b = / K  + n2/4 

Normalization to 1 gives a condition to 2. 
Next we will discuss three different situations. 
(i) K > 0. In this case there occurs a special point 

n, = n , / 2 +  b (8) 

in the physically meaningful interval O r  n+<m. At this point the diffusion term 
vanishes whereas the drift term is negative. Since the stationary solution (7) does not 
exist there, it is necessary to study the dynamics of the system using ( 5 ) .  Starting with 
a concentration N > n, the system will reach the point n, due to the nonzero diffusion 
term for all n+ > n, .  Since g'(n,) = 0 and f ( n , )  < O  the system will be driven to the 
region n, < n, with probability 1. Approaching n,  from the left the system will be 
reflected there. Consequently, it will be confined to the region 0 S n, < n, after a certain 
time I , ,  which will be calculated below. Since the stationary solution corresponds to 
the limit t+m,  it is given by (7) within the interval [0, n,) and equals zero outside. 
We remark that p.( n, + n, - 0) = 0. 

The stationary probability density exhibits a maximum at n,E (0, n.) where n ,  is 
L given as the solution of a cubic equation. n ,  is a monotonously increasing function 
of K.  The following approximations are valid: 

n , a  K for K << n:,  K4(A)' n,x& for K >> n:, u-'(A)'. (9) 
A typical stationary solution is shown in figure 1. 

Contrary to the deterministic model the most probable result of the process is a 
non-vanishing concentration n+ here. The physical reason is the influence of the 
backward reaction, modelled by the two competing stochastic terms. One of the 
stochastic terms causes an increasing concentration while the other one causes a 
decreasing n,. 

36 
a- 

Concentration n,l-n.] 

Figure 1. Stationary probability density ps of n, far I =O.ln:; U'= -O.l(A)n;' 
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(ii) K = 0. There is no additive noise. At the point n ,  = 0 both diffusion and drift 
are equal to zero. The system remains at this point once it has reached it. Hence the 
stationary probability density has a 8-peak. It is easily proved that s ( n + )  is a solution 
of the stationary Fokker-Planck equation for a vanishing current. Such a behaviour 
corresponds exactly to the deterministic case mentioned above. 

(iii) K < 0. Contrary to cases (i) and (ii) the stationary solution (7) exists everywhere 
in Osn+<m.  p .  is a monotonously decreasing function, giving a non-zero value to 
every n, .  The most probable concentration is n+ = 0, resulting also in the deterministic 
model. A typical shape for p .  is shown in figure 2. 

In summary, the most probable values n,  for the concentration n ,  in the stationary 
case ( f  + m) are given in figure 3 as a function of the control parameter K.  Obviously, 
there occurs a noise induced transition at K = 0. In analogy to classical phase transition 
phenomena we are able to calculate a characteristic exponent p = 1 ,  defined by n , ~  K O  

(for small K ) .  p is different to the classical critical exponent f [ll]. 
Next the dynamics of the system will be studied briefly. The time necessary for 

reaching a stationary probability density is infinite. A complete description of the 
evolution of the probability density is given by the Fokker-Planck equation (6). Typical 
times can be found by an eigenfunction expansion; see e.g., [12]. This will not he 
performed here. Besides, the time scales of the dynamics of the system are in general 

Cootentrdion n+l-n,l 

Figure 2. Stationary probability density p1 of n, for N = -0 . Ink ( r2 =-O.l(A)n;' 

control pornmeter x I n : )  

Figure 3. Most probable resulting concentration nm as a function of the control parameter 
K for small K and for v2= -(A)n;'. 
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not identical to those for the probability density. (Even in the case of a stationary 
distribution the system itself changes its state.) For the most interesting case K > 0, 
where the noise changes the steady state qualitatively, we are able to find a characteristic 
time of the system dynamics by an approximation for small noise. 

The system starts with certainty at n,  = N. (We assume N > n. . )  After reaching n, 
it will be driven to n+< n, and will never return. Hence the average time 1, necessary 
for reaching n, has a physical meaning very similar to the corresponding time for the 
deterministic model. 1, can be calculated as a mean first passage time. As a function 
of N, 1, obeys the following differential equation [ 1 3 ] :  

f ( N ) J N f , (  N ) + f g 2 (  N ) d h f , (  N )  = -1. (10)  

Considering the Kolmogorov backward equation the boundary conditions for the 
problem are obtained as: 

t S n J  = 0 dNfs(N)IN+m=O. ( 1 1 )  

Since we have not found a general solution we use a perturbative approach with 
respect to u2. Writing f( N )  as f( N )  =fo( N ) +  u+%( N ) ,  g 2 ( N )  as g2( N )  = u2g:( N )  
and expanding f , ( N )  = t ! O ' ( N ) + u 2 0 ( N ) + o ( u 4 )  we get as a perturbative approxi- 
mation 

N2n:-2Nn,( N 2 -  K ) +  ( N ' - K ) *  
= ( A)-2 

4 N 2 ( N - n J 2  

where logarithmic terms occurring in the expression for 0 cancel each other. 
Inserting (12) and ( 1 3 )  into the expansion for 1, we obtain: 

Here 1, is a quantity averaged over all sample paths starting at N and ending at n,.  
hence (14) can be understood as the law governing (on average) the approach of the 
system to R ,  and it corresponds to the deterministic law (3) in the sense described 
above. Remark that for u = 0, which means a vanishing randomness, (3) and (14) are 
identical. 

For K <(c N 2 ,  0 is approximately independent on N ;  0 = (A)-2 /4 .  That means physi- 
cally the noise does not change the timescale of the evolution. Only a shift occurs. 
The time necessary to reach the concentration n, is increased by addition of a definite 
amount due to the randomness. 

Summarizing, we have discussed a chemical reaction model with a multiplicative 
and an additive noise coupled to each other. It exhibits a noise-induced transition 
with a characteristic exponent p = 1. We have studied the dynamics of one of the 
phases. In the case of small noise and a small control parameter K ,  the randomness 
does not change the timescale. It causes only an additive increasing of the deterministic 
relaxation time. 
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Further investigations should concern the. dynamics of the probability density or 
the relation of the equations used here to a deterministic description in a higher- 
dimensional phase space. The inclusion of explicit diffusive terms is considered in a 
forthcoming paper [14]. 

One of the authors (ST) gratefully acknowledges useful discussions with D Mukamel, 
and the hospitality at the Weizmann Institute of Science. 
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